0=-25p^2+1200

Simple and best practice solution for 0=-25p^2+1200 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-25p^2+1200 equation:



0=-25p^2+1200
We move all terms to the left:
0-(-25p^2+1200)=0
We add all the numbers together, and all the variables
-(-25p^2+1200)=0
We get rid of parentheses
25p^2-1200=0
a = 25; b = 0; c = -1200;
Δ = b2-4ac
Δ = 02-4·25·(-1200)
Δ = 120000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{120000}=\sqrt{40000*3}=\sqrt{40000}*\sqrt{3}=200\sqrt{3}$
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-200\sqrt{3}}{2*25}=\frac{0-200\sqrt{3}}{50} =-\frac{200\sqrt{3}}{50} =-4\sqrt{3} $
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+200\sqrt{3}}{2*25}=\frac{0+200\sqrt{3}}{50} =\frac{200\sqrt{3}}{50} =4\sqrt{3} $

See similar equations:

| 3m+4m=6m | | 9k=10-k | | 4(j-7)+6(j-23)=14 | | 7n3-(448n)=0 | | 250-2x+2x=250 | | 9k=10-k/1 | | -8(7x-1)=-160 | | -6-5(1-6b)=-11-4b | | 1/3x=1/2(x+2) | | r+70=110+70 | | 1/2=-1/8j | | 5+11m-1=6m+60-2m | | 2n+2(5n+4)=80 | | Z+6/3-z-12/4=2 | | 7n3=448n | | -4n=-1/8 | | 2(6x+4)-3x=-10 | | r+70=110+70=r | | 5x+6=4x-12 | | 5(3-4x)=95 | | 9/4=c-2 | | 6x2-17x+16=0 | | 3.6x+8.3=1.7x=19.7 | | -2(7m-2)=116 | | 13x-24=-2 | | 6x+14=4+4× | | 124g-4=0.34 | | .40+120=100+x | | 17+(3x)=125 | | 2x(x-1)-24=0 | | 2r+2(r+70)=580 | | 5(x-2)-4x=-2(1+3x)+5x |

Equations solver categories